plotXpose is a companion app with the book Mathematics for Electrical Engineering and Computing by Mary Attenborough - click for more info
 

Is this a fix? - Solution

The graph of y(t)=t^2-2


The graph of y(t)=t^2-2. Solving the square root of 2 using a fixed point method. Mathematics for Electrical Engineering and Computing plotXpose app problem

Solving t^2-2=0: Success. The Fix point method, using function 1+1/(t+1) has converged to the value (1.4142135623731,4.44089209850063E-016).
The sequence of values found was
( n, t , y(t))
(0, 0.653594791889191, -1.572813848015326E+000)
(1, 1.60474307545292, 5.752003382140951E-001)
(2, 1.38391502387471, -8.477920669385353E-002)
(3, 1.41947803926947, 1.491790396830339E-002)
(4, 1.41331228627392, -2.548381467192717E-003)
(5, 1.41436825465467, 4.375597749040061E-004)
(6, 1.41418702307409, -7.506376884935939E-005)
(7, 1.41421811584699, 1.287918980796832E-005)
(8, 1.41421278112196, -2.209711290612759E-006)
(9, 1.41421369641464, 3.791267650932184E-007)
(10, 1.4142135393752, -6.504786154160058E-008)
(11, 1.41421356631891, 1.116044856530607E-008)
(12, 1.4142135616961, -1.914829850235833E-009)
(13, 1.41421356248925, 3.285327565549778E-010)
(14, 1.41421356235317, -5.636735522784875E-011)
(15, 1.41421356237651, 9.671374812114664E-012)
(16, 1.41421356237251, -1.659561377209684E-012)
(17, 1.4142135623732, 2.846611835138901E-013)
(18, 1.41421356237308, -4.862776847858186E-014)
(19, 1.4142135623731, 8.437694987151190E-015)
(20, 1.41421356237309, -1.554312234475219E-015)
(21, 1.4142135623731, 4.440892098500626E-016)



The graph of y(t)=t^2-5


The graph of y(t)=t^2-5. Solving the square root of 5 using a fixed point method. Mathematics for Electrical Engineering and Computing plotXpose app problem


To find a suitable fix point function to find the square root of 5 using a Fix point method, we can begin with:

t^2= 5

subtract the square of an integer from both sides (in this case 4) gives:

t^2-4=1

use the difference of two squares factorization on the left-hand-side to get

(t-2)(t+2)=1

divide by one of the factors on the left-hand-side giving (t-2)=1/(t+2)

and finally add 2 to both sides giving

t=2+1/(t+2)

i.e. the fix point function to use is fix(t)=2+1/(t+2).

Solving t^2-5=0: Success. The Fix point method, using function 2+1/(t+2) has converged to the value (2.2360679774998,8.88178419700125E-016).
The sequence of values found was
( n, t , y(t))
(0, 1.45969498157501, -2.869290560764725E+000)
(1, 2.28904282178794, 2.397170399788733E-001)
(2, 2.23315225367303, -1.303101191505629E-002)
(3, 2.23623057713842, 7.271941288475858E-004)
(4, 2.2360589164803, -4.052202895898915E-005)
(5, 2.23606848245418, 2.258224937712328E-006)
(6, 2.23606794935965, -1.258465323061841E-007)
(7, 2.23606797906799, 7.013187364179885E-009)
(8, 2.2360679774124, -3.908322554480037E-010)
(9, 2.23606797750466, 2.178168756472587E-011)
(10, 2.23606797749952, -1.215028078149771E-012)
(11, 2.2360679774998, 6.838973831690964E-014)
(12, 2.23606797749979, -3.552713678800501E-015)
(13, 2.23606797749979, 8.881784197001252E-016)
(14, 2.23606797749979, 8.881784197001252E-016)


The graph of y(t)=t^3-5


The graph of y(t)=t^3-5. Solving the cubed root of 5 using a fixed point method. Mathematics for Electrical Engineering and Computing plotXpose app problem


To find a suitable fix point function to find the cubed root of 5, using a Fix point method, we can begin with:

t^3=5

In order to use the well-known factorisation of the difference of two cubes, we subtract an integer cube from both sides, in this case 1, giving

t^3-1=4

Factorise to give:
(t-1)(t^2+t+1)=4

Divide both sides by (t^2+t+1)
t-1 = 4/(t^2+t+1)
Finally add 1 to both sides to give

t =1+4/(t^2+t+1)

So fix(t)=1+4/(t^2+t+1)

To use this fix point function we increase the potential number of iterations to the maximum of 100, giving e.g. the result below.

Solving t^3-5=0: Success. The Fix point method, using function 1+4/(t^2+t+1) has converged to the value (1.7099759466767,1.06581410364015E-014).
The sequence of values found was
( n, t , y(t))
(0, 0.816993474960327, -4.454674553072264E+000)
(1, 2.61000015332361, 1.277958413336753E+001)
(2, 1.38379977489955, -2.350159296664016E+000)
(3, 1.93051353169673, 2.194797089695588E+000)
(4, 1.60083551937128, -8.975798598007518E-001)
(5, 1.77466686292552, 5.892111959473372E-001)
(6, 1.67520698425003, -2.988357491481857E-001)
(7, 1.72972387982472, 1.752381954589346E-001)
(8, 1.69909676589793, -9.482687965940073E-002)
(9, 1.71607249599932, 5.367015039466594E-002)
(10, 1.70659177430073, -2.962742779927474E-002)
(11, 1.71186445246782, 1.658437568343985E-002)
(12, 1.70892518208005, -9.211700132656375E-003)
(13, 1.71056155206591, 5.138721062757590E-003)
(14, 1.70964987887097, -2.859738763023145E-003)
(15, 1.71015759517167, 1.593599538222357E-003)
(16, 1.70987478114081, -8.873769632460338E-004)
(17, 1.71003229771685, 4.943306128728509E-004)
(18, 1.70994456088438, -2.753127871137906E-004)
(19, 1.70999342845178, 1.533526291108700E-004)
(20, 1.70996620965557, -8.541318107102569E-005)
(21, 1.70998137009741, 4.757468594629444E-005)
(22, 1.70997292591266, -2.649825607115020E-005)
(23, 1.70997762920492, 1.475924159244357E-005)
(24, 1.70997500953174, -8.220680901338540E-006)
(25, 1.70997646865424, 4.578816199085622E-006)
(26, 1.70997565594223, -2.550337751650034E-006)
(27, 1.70997610861195, 1.420504805338396E-006)
(28, 1.70997585648092, -7.912020905109785E-007)
(29, 1.70997599691455, 4.406890958819076E-007)
(30, 1.70997591869488, -2.454579473010199E-007)
(31, 1.70997596226219, 1.367168174226663E-007)
(32, 1.70997593799578, -7.614944852463168E-008)
(33, 1.70997595151185, 4.241422946194007E-008)
(34, 1.70997594398358, -2.362415951751018E-008)
(35, 1.70997594817673, 1.315834197157528E-008)
(36, 1.7099759458412, -7.329021833868410E-009)
(37, 1.70997594714206, 4.082166604746362E-009)
(38, 1.7099759464175, -2.273713661793408E-009)
(39, 1.70997594682107, 1.266428739654657E-009)
(40, 1.70997594659628, -7.053824191416425E-010)
(41, 1.70997594672149, 3.928883884896095E-010)
(42, 1.70997594665175, -2.188329517593957E-010)
(43, 1.70997594669059, 1.218873890707073E-010)
(44, 1.70997594666896, -6.788969386661847E-011)
(45, 1.70997594668101, 3.781508439715253E-011)
(46, 1.7099759466743, -2.106315122318847E-011)
(47, 1.70997594667803, 1.173194874581895E-011)
(48, 1.70997594667595, -6.536104990573222E-012)
(49, 1.70997594667711, 3.641531520770514E-012)
(50, 1.70997594667647, -2.028599510595086E-012)
(51, 1.70997594667683, 1.129762949858559E-012)
(52, 1.70997594667663, -6.306066779870889E-013)
(53, 1.70997594667674, 3.517186542012496E-013)
(54, 1.70997594667667, -1.945110739143274E-013)
(55, 1.70997594667671, 1.074695887837152E-013)
(56, 1.70997594667669, -5.950795411990839E-014)
(57, 1.7099759466767, 3.375077994860476E-014)
(58, 1.70997594667669, -1.865174681370263E-014)
(59, 1.7099759466767, 1.065814103640150E-014)



plotXpose app is available on Google Play and App Store
Download plotXpose on the App Store
Get plotXpose on Google Play
Google Play and the Google Play logo are trademarks of Google LLC.
A version will shortly be available for Windows.
plotXpose app is a companion to the book Mathematics for Electrical Engineering and Computing by Mary Attenborough, published by Newnes, 2003.