plotXpose is a companion app with the book Mathematics for Electrical Engineering and Computing by Mary Attenborough - click for more info
 

The Golden Ratio

Home > All Problems > The Golden Ratio


The golden ratio is found from the limit, as n tends to infinity, of the ratio of two successive terms of the Fibonacci sequence: x(n)=x(n-1)+x(n-2).

Divide the recurrence relation by x(n-1) and set r(n)=x(n)/x(n-1) to show that the limit of the ratio, r, satisfies r=1+1/r.

Solve this equation using the quadratic formula, using Newton-Raphson and using another fixed point method.



See The Golden Ratio - Solution



#sequences #equationsolving #numericalmethods #goldenratio



plotXpose app is available on Google Play and App Store
Download plotXpose on the App Store
Get plotXpose on Google Play
Google Play and the Google Play logo are trademarks of Google LLC.
A version will shortly be available for Windows.
plotXpose app is a companion to the book Mathematics for Electrical Engineering and Computing by Mary Attenborough, published by Newnes, 2003.